

APPLE COMPUTER COMPANY
770 Welch Road
Palo Alto, Calif. 94304

MIC ROPROCESSOR:

Microprocessor Clock Frequency:
Effective Cycle Frequency:
(Including Refresh Waits)

VIDEO OUTPUT:

Line Rate:
Frame Rate:

Format:

Display Memory:
Character Matrix:

RAM MEMORY:

On-board RAM Capacity:

POWER SUPPLIES:

Input Power Requirements:

Recommended Transformers:

MOS TECHNOLOGY 6502
1.023 MHz
0.960 MHz

Composite positive video, 75 ohms, level adjustable between zero and +5 V pp.

15734 Hz
60.05 Hz

40 characters/line, 24 lines; with automatic scrolling

Dynamic shift registers ($1 \mathrm{~K} \times 7$)
5×7

16-pin, 4K Dynamic, type 4096 (2104)
8 K bytes (4 K supplied)
+5 Volts@ $3 \mathrm{amps},+/-12 \mathrm{~V}$ olts @0.5 amp and -5 Volts @ 0.5 amps

8 to 10 Volts AC (RMS) @ 3 amps, 26 to 28 Volts AC (RMS) Center-Tapped, 1 A .

Stancor \# P-8380 or Triad F31-X
Stancor \# P-8667 or Triad F40-X

The Apple Computer is a complete micro--ocessor system, consisting of a Mos Technology 32 microprocessor and support hardware, ingral video display electronics, dynamic memory and refresh hardware, and fully regulated power supplies. It contains resident system monitor software, enabling the user, via the keyboard and display, to write, examine, debug, and run programs efficiently; thus being an educational tool for the learning of microprocessor programming, and an aid in the development of software.

The integral video display section and the keyboard interface renders unnecessary the need for an external teletype. The display section contains its own memory, leaving all of RAM for user programs, and the outputformat is 40 characters/ line, 24 lines/page, with auto scrolling. Almost any ASCII encoded keyboard will interface directly with the Apple system.

The board has sockets for upto 8 K bytes of the 16 pin , 4 K type, RAM, and the system is fully expandable to 65 K via the edge connector. The system uses dynamic memory (4 K bytes sup-
plied), although static memory may also be used. All refreshing of dynamic memory, including all "off-board" expansion memory, is done automatically. The entire system timing, including the microprocessor clock and all video signals, originates in a single crystal oscillator.

Further, the printed circuit board contains a "breadboard area", in which the user can add additional "on-board" hardware (for example, extra PIA's, ACIA's, EROM's, and so on),

This manual is divided into three Sections:
Section I GETTING THE SYSTEM RUNNING. Section II USING THE SYSTEM MONITOR.
(listing included)
Section III EXPANDING THE SYSTEM.
Please readSection I thoroughly, beforeattempting to "power-up" your system, and study Section III carefully before attempting to expand your system. In addition to this manual, Apple "Tech Notes" are available which contain examples of expansion hardware and techniques.

The Apple Computer is fully assembled, tested, and burned in. The only external devices necessary for operation of the system are: An ASCII encoded keyboard, a video display monitor, and AC power sources of 8 to 10 Volts (RMS) @3 amps and 28Volts (RMS) @lamp. The following three articles describe the attachment of these devices in detail.

Keyboard:

Any ASCII encoded keyboard, with positive DATA outputs, interfaces directly with the Apple system via a "DIP" connector. If your keyboard has negative logic DATA outputs (rare), you can install inverters (7404) in the breadboard area. The strobe can be either positive or negative, of long or short duration. The "DIP" keyboard connector (B4) has inputs for seven DATA lines, one

STROBE line, and two normally-open pushbutton switches, used for RESET (enter monitor), and CLEAR SCREEN (see schematic diagram, sheet 3 of 3 , for exact circuitry). This keyboard connector also supplies three voltages, $(+5 \mathrm{~V},+12 \mathrm{~V}$, and -12 V) of which one or more may be necessary to operate the keyboard. Pin 15 of the keyboard connector (B4) must be tied to +5 V (pin 16) for normal operation.

NOTE: The system monitor accepts only uppercase alpha (A-F, R).

It is therefore convenient, though it's not essential, to have a keyboard equipped with uppercase alphalock (usually in the electronics). Either of the following suggested circuits may be used to provide alpha lock capability, if needed, and can be built in the breadboard area.

Display:

The Apple Computer outputs a composite video signal (composite of sync and video information) which can be applied to any standard raster-scan type video display monitor. The output level is adjustable with the potentiometer located near the video output Molex connector, J2. The additional two outside pins on the Molex connector supply +5 and +12 volts, to be used in future Apple accessories. The composite video signal can also be modulated at the proper RF frequency, with an inexpensive commercially available device, and applied to the antenna terminals of a home television receiver. Since the character format is 40 characters / line, all television receivers will have the necessary bandwidth to display the entire 40 characters. Two large manufacturers of video display monitors, which connect directly with the Apple Computer, are Motorola and Ball. The mating four-pin Molex connector is provided.

AC Power Sources:

Two incoming AC power sources are required for operation: 8 to 10 VAC (RMS) at 3 amps , and 28 VAC (RMS) Center-Tapped at 1 amp . These AC supplies enter the system at the Molex connector, J1. The 8 to 10 volts AC provides the raw AC for the +5 volt supply, while the 28 VCT supplies the raw $A C$ for the +12 and -12 volt supplies, and the -5 V supply is derived from the -12 V regulated output.

The board, as supplied, requires no more than 1.5 amps DC from the +5 V supply, while the regulator is capable of supplying 3 amps . The remaining 1.5 amps DC from the +5 V supply is available for user hardware expansion (provided suitable transformer ratings are employed).

A suitable source of the raw AC voltages required, are two commercially available transformers; Stancor P/N P-8380 or equivalent (8 to 10 volts at 3 amps), and Stancor P/N P-8667 or
equivalent (28 VCT at 1 amp). Simply wire the secondaries to the mating six-pin Molex connector supplied, and wire the primaries in parallel, as shown in the schematic diagram (power supp section, Dwg. No. 00101, sheet 3 of 3 .

TEST PROGRAM

After attaching the keyboard, display, and AC power sources, you can try a simple program to test if your system and the attachments are functioning together properly. While it does not test many possible areas of the microprocessor system, the test program will test for the correct attachment of the keyboard, display, and power supplies.

FIRST:

Hit the RESET button to enter the system monitor. A backslash should be displayed, and the cursor should drop to the next line.

SECOND:
Type- \varnothing : A9 b \varnothing b AA b 2ϕ b EF b FF b E8 b 8A b 4C b 2 b \emptyset (RET)
(\varnothing is a zero, NOT an alpha "O"; b means blank or space; and (RET) hit the "return" key on the keyboard)

THIRD:

Type- \varnothing. A (RET)
(This should print out, on the display, the program you have just entered.)

FOURTH:

Type- R (RET)
(R means run the program.)
THE PROGRAM SHOULD THEN PRINT OUT ON THE DISPLAY A CONTINUOUS STREAM OF ASCII CHARACTERS. TO STOP THE PROGRAM AND RETURNTOTHE SYSTEM MONITOR, HIT THE "RESET" BUTTON, TO RUN AGAIN, TYPE : R (RET).

$F F \emptyset \emptyset$	D8	RESET	CLD
FFø1	58		CLI
FF¢2	A¢ 7F		LDY \#\$7F
FFø4	8C $12 \mathrm{D} \emptyset$		STY DSP
FFø7	A9 A 7		LDA \#\$A7
FFø9	8D 11 D \emptyset		STA KBD CR
FFøC	8D 13 D ¢		STA DSP CR
FFøF	C9 DF	NOTCR	CMP \#\$DF
FFll	Fø13		BEQ BACKSPACE
FFl3	C9 9B		CMP \#\$9B
FF15	Fø03		BEQ ESCAPE
FFl7	C8		INY
FF18	$1 \emptyset \emptyset \mathrm{~F}$		BPL NEXTCHAR
FFlA	A9 DC	ESCAPE	LDA \#\$DC
FFIC	20 EF FF		JSR ECHO
FFlF	A9 8D	GETLINE	LDA \#\$8D
FF21	$2 \emptyset$ EF FF		JSR ECHO
FF24	A $\emptyset \emptyset 1$		LDY \#\$ø1
FF26	88	BACKSPACE	DEY
FF27	30 F6		BMI GETLINE
FF29	AD 11 D \emptyset	NEXTCHAR	LDA KBD CR
FF2C	$1 \emptyset \mathrm{FB}$		BPL NEXTCHAR
FF2E	AD 1 \varnothing D \emptyset		LDA KBD
FF31	$99 \varnothing \varnothing \varnothing 2$		STA IN, Y
FF34	$2 \emptyset \mathrm{EFFF}$		JSR ECHO
FF37	C9 8D		CMP \#\$8D
FF39	Dø D4		BNE NOTCR
FF3B	A $\emptyset \mathrm{FF}$		LDY \#\$FF
FF3D	A9 $\emptyset \emptyset$		LDA \#\$ $\dagger \emptyset$
FF3F	AA		TAX
FF4ø	$\emptyset \mathrm{A}$	SETSTOR	ASL
FF41	85 2B	SETMODE	STA MODE
FF43	C8	BLSKIP	INY
FF44	B9 $\emptyset \emptyset \emptyset 2$	NEXT ITEM	LDA IN, Y
FF47	C9 8D		CMP \#\$8D
FF49	$\mathrm{F} \emptyset \mathrm{D} 4$		BEQ GETLINE
FF4B	C9 AE		CMP \#\$AE
FF4D	$9{ }_{6} \mathrm{~F} 4$		BCC BLSKIP
FF4F	$F \emptyset F \emptyset$		BEQ SETMODE
FF51	C9 BA		CMP \#\$BA
FF53	$F \emptyset E B$		BEQ SETSTOR
FF55	C9 D2		CMP \#\$D2
FF57	Fø 3B		BEQ RUN
FF59	8628		STX L
FF5B	8629		STX H
FF5D	84 2A		STY YSAV
FF5F	B9 $\varnothing \varnothing \emptyset 2$	NEXTHEX	LDA IN, Y
FF62	$49 \mathrm{~B} \emptyset$		EOR \#\$B \emptyset
FF64	C9 $\emptyset \mathrm{A}$		CMP \#\$ ${ }^{\text {¢ }}$
FF66	$9 \emptyset \square 6$		BCC DIG
FF68	6988		ADC \#\$88
FF6A	C9 FA		CMP \#\$FA
FF6C	9611		BCC NOTHEX
FF6E	$\emptyset A$	DIG	ASL
FF6F	ϕ A		ASL
FF7¢	$\emptyset \mathrm{A}$		ASL
FF71	$\emptyset \mathrm{A}$		ASL
FF72	A2 \emptyset_{4}		LDX \#\$04
FF74	$\emptyset A$	HEXSHIFT	ASL

Clear decimal arithmetic mode.

Mask for DSP data direction register.
Set it up.
KBD and DSP control register mask.
Enable interrupts, set CA1, CB1, for positive edge sense/output mode.
" $\&$ "?
Yes.
ESC?
Yes.
Advance text index.
Auto ESC if >127.
" ${ }^{\prime}$ ".
Output it.
CR.
Output it.
Initiallize text index.
Back up text index.
Beyond start of line, reinitialize.
Key ready?
Loop until ready.
Load character. B7 should be '1'.
Add to text buffer.
Display character.
CR?
No.
Reset text index.
For XAM mode.
$\phi \rightarrow$.
Leaves \$7B if setting STOR mode.
$\$ \emptyset \emptyset=X A M, \$ 7 B=S T O R, \$ A E=B L O K X A M$.
Advance text index.
Get character.
CR?
Yes, done this line.
"."?
Skip delimiter.
Set BLOCK XAM mode.
":"?
Yes, set STOR mode.
"R"?
Yes, run user program.
$\$ \phi \emptyset \rightarrow \mathrm{~L}$.
and H .
Save Y for comparison.
Get character for hex test.
Map digits to \$ \varnothing - 9 .
Digit?
Yes.
Map letter "A"-"F" to \$FA-FF.
Hex letter?
No, character not hex.
Hex digit to MSD of A.

Shift count.
Hex digit left, MSB to carry.

6502 HEX MONIT OR LISTING (continued)

FF75	2628		ROL L
FF77	2629		ROL H
FF79	CA		DEX
FF7A	$D \emptyset F 8$		BNE HEXSHIFT
FF7C	C8		INY
FF7D	$D \emptyset E \emptyset$		BNE NEXTHEX
FF7F	C4 2A	NOTHEX	CPY YSAV
FF81	F¢97		BEQ ESCAPE
FF83	242 B		BIT MODE
FF85	$5 \emptyset 1 \varnothing$		BVC NOTSTOR
FF87	A5 28		LDA L
FF89	8126		STA (STL, X)
FF8B	E6 26		INC STL
FF8D	Dø B5		BNE NEXTITEM
FF8F	E6 27		INC STH
FF91	4C 44 FF	TONEXTITEM	JMP NEXTITEM
FF94	6C 24 ¢ \emptyset	RUN	JMP (XAML)
FF97	$3 \emptyset 2 \mathrm{~B}$	NOTSTOR	BMI XAMNEXT
FF99	A2 62		LDX \#\$02
FF9B	B5 27	SETADR	LDA L-1, X
FF9D	9525		STA STL-1, X
FF9F	9523		STA XAML-1, X
FFAl	CA		DEX
FFA2	D¢ F7		BNE SETADR
FFA4	Dø 14	NXTPRNT	BNE PRDATA
FFA6	A9 8D		LDA \#\$8D
FFA8	$2 \emptyset$ EF FF		JSR ECHO
FFAB	A 525		LDA XAMH
FFAD	$2 \emptyset$ DC FF		JSR PRBYTE
FFB \emptyset	A5 24		LDA XAML
FFB2	$2 \emptyset$ DC FF		JSR PRBYTE
FFB5	A9 BA		LDA \#\$BA
FFB7	$2 \emptyset \mathrm{EFFF}$		JSR ECHO
FFBA	A9 A 9	PRDATA	LDA \#\$A
FFBC	$2 \emptyset$ EF FF		JSR ECHO
FFBF	Al 24		LDA (XAML, X)
FFCl	$2 \emptyset$ DC FF		JSR PRBYTE
FFC4	862 B	XAMNEXT	STX MODE
FFC7	A5 24		LDA XAML
FFC8	C5 28		CMP L
FFCA	A5 25		LDA XAMH
FFCC	E5 29		SBC H
FFCE	$\mathrm{B} \emptyset \mathrm{Cl}$		BCS TONEXTITEM
FFD \emptyset	E6 24		INC XAML
FFD2	Dめ 62		BNE MOD8CHK
FFD4	E6 25		INC XAMH
FFD6	A5 24	MOD8CHK	LDA XAML
FFD8	2967		AND \#\$ø7
FFDA	10 C8		BPL NXTPRNT
FFDC	48	PRBYTE	PHA
FFDD	4A		LSR
FFDE	4A		LSR
FFDF	4A		LSR
FFE¢	4A		LSR
FFEl	$2 \emptyset \mathrm{E} 5 \mathrm{FF}$		JSR PRHEX
FFE4	68		PLA
FFE5	29 ¢F	PRHEX	AND \#\$ $\dagger \mathrm{F}$
FFE7	$\emptyset 9 \mathrm{~B} \emptyset$		ORA \#\$B \varnothing
FFE9	C9 BA		CMP \#\$BA

Rotate into LSD.
Rotate into MSD's.
Done 4 shifts?
No, loop.
Advence text index.
Always taken. Check next character for hex.
Check if L, H empty (no hex digits).
Yes, generate ESC sequence.
Test MODE byte.
$B 6=\emptyset$ for STOR, 1 for XAM and BLOCK XAM
LSD's of hex data.
Store at current 'store index'.
Increment store index.
Get next item. (no carry).
Add carry to 'store index' high order.
Get next command item.
Run at current XAM index.
$B 7=\emptyset$ for $X A M, 1$ for BLOCK XAM.
Byte count.
Copy hex data to
'store index'.
And to 'XAM index'.
Next of 2 bytes.
Loop unless $X=\varnothing$.
NE means no address to print.
CR.
Output it.
'Examine index'high-order byte.
Output it in hex format.
Low-order 'examine index' byte,
Output it in hex format.
":".
Output it.
Blank,
Output it.
Get data byte at 'examine index'.
Output it in hex format.
$\phi \rightarrow$ MODE (XAM mode).
Compare 'examine index' to hex data.

Not less, so no more data to output.
Increment 'examine index'.

Check low-order 'examine index' byte For MOD $8=\varnothing$
Always taken.
Save A for LSD.

MSD to LSD position.
Output hex digit.
Restore A.
Mask LSD for hex print.
Add " \emptyset ".
Digit?
$65 \emptyset 2$ HEX MONITOR LISTING (continued)

FFEB $9 \emptyset \emptyset_{2}$
FFED $69 \not 06$
FFEF 2C $12 \mathrm{D} \emptyset \quad$ ECHO
FFF2 $3 \emptyset$ FB
FFF4 8D 12 D \emptyset
FFF7 6 \emptyset
FFF $8 \phi \emptyset \emptyset \emptyset$ (unused)
FFFA $\emptyset \emptyset \emptyset F$ (NMI)
FFFC $\emptyset \emptyset$ FF (RESET)
FFFE $\phi \emptyset \phi \varnothing$ (IRQ)

BCC ECHO
ADC \#\$06
BIT DSP
BMI ECHO
STA DSP
RTS

Yes, output it.
Add offset for letter.
DA bit (B7) cleared yet?
No, wait for display.
Output character. Sets DA.
Return.

HARDWARE NOTES

Page \varnothing Variables	
XAML	24
XAMH	25
STL	26
STH	27
L	28
H	29
YSAV	2 A
MODE	2 B

Other Variables
$\left.\begin{array}{ll}\text { IN } & 2 \phi \varnothing-27 F \\ \text { KBD } \\ \text { KBD CR } & \begin{array}{l}D \phi 1 \emptyset \\ \text { DSP } \\ \text { DSP CR }\end{array} \\ D \phi 12 \\ D \phi 13\end{array}\right\}$ PIA

KBD/DSP Interface

The Apple system can be expanded to include more memory and IO devices, via a 44-pin edge connector. The system is fully expandable to 65 K , with the entire data and address busses, clocks, control signals (i.e. IRQ, NMI, DMA, RDY, etc.), and power sources available at the connector. All address lines are TTL buffered, and data lines can drive ten equivalent capacitive loads (one TTL Ioad and 130 pf) without external buffers. All clock signals are TTL. The Apple system runs at approximately 1 MHz (see spec sheet) and is fully compatible with $6800 / 6500$ style timing.

Three power sources are available at the edge connector: +5 volts regulated, and raw DC (approximately $+/-14 \mathrm{~V}$) for the $+12 \mathrm{~V},-12 \mathrm{~V}$, and -5 V supplies. If $+12 \mathrm{~V},-12 \mathrm{~V}$, or -5 V supplies are required, EXTERNAL REGULATORS MUST BE USED. An excess of 1.5 amps from the "onboard" regulated +5 V supply is available for expansion (assuming suitable transformer ratings are employed). Exercise great care in the handling of the raw DC, as no short-circuit protection is provided.

REFRESH:

Four out of every 65 clock cycles is dedicated to memory refresh. At the start of a refresh cycle (150 ns after leading edge of $\varnothing 1$), $\overline{\mathrm{RF}}$ goes low, and remains low for one clock cycle. $\phi 2$ is inhibited during a refresh cycle, and the processor is held in $\emptyset 1$ (it's inactive state). Dynamic memories, which must clock during refresh cycles, should derive their clock from $\varnothing 0$, which is equivalent to $\varnothing 2$, except that it continues during a refresh cycle. Devices, such as PIA's, will not be affected by a refresh cycle, since they react to $\emptyset 2$ only. Refer to Apple "Tech Notes" for a variety of interfacing examples.

DMA:
The Apple system has full DMA capabil: For DMA, the DMA control line tri-states 2 address buss, thus allowing external devices to control the buss. Consult MOS TECHNOLOGY 6502 Hardware Manual for details. (For DMA use, the solder jumper on the board, marked "DMA", must be broken.)

For the 6502 microprocessor, the RDY line is used to halt the processor for single stepping, or slow ROM applications. Refer to Apple "Tech Notes" for examples.

SOFTWARE CONSIDERATIONS:

The sequences listed below are the routines
used to read the keyboard or output to the display.
Read Key from KBD:
(LDA KBD CR (Dø11)
(BPL LDA KBD DATA (D $\varnothing 1 \phi$)

Output to Display: (BIT DSP (Dø12) BPL STA DSP (Dø12)

PIA Internal Registers: KBD
$D \emptyset 1 \emptyset$
High order bit equals 1 .
KBD Control Reg. Dø11
High order bit indicates "key ready". Reading key clears flag. Rising edge of KBD sets flag. DSP DATA D $\varnothing 12$

Lower seven bits are data output, high order bit is "display ready" input (1 equals ready, \emptyset equals busy)

If more than one source for RDY use open-collector gate $74 \emptyset 1$ (not ' \varnothing ()

SLOW ROM

(NOTE: Features not needed may be omitted)

SINGLE STEP FOR 6502

ADDRESS DISPLAY

The Apple Computer Company hereby warrants each of its products, and all components therein contained, to be free from defects in materials and/or workmanship for a period of thirty (30) days from date of purchase. In the event of the occurrence of malfunction, or other indication of failure attributable directly to faulty workmanship and/or material, then, upon return of the product to the Apple Computer Company, at 770 Welch Road, Palo Alto, California, 94304 (postage prepaid), the Apple Computer Company will, at its option, repair or replace said products or components thereof, to what ever extent Apple Computer Company shall deem necessary, to restore said product to proper operating condition. All such repairs or replacements shall be rendered by the Apple Computer Company, without charge to the customer.
The responsibility for the failure of any Apple Computer product, or component thereof, which, at the discretion of the Apple Computer Company, shall have resulted either directly or indirectly from accident, abuse, or misapplication of the product, shall be assumed by the customer, and the Apple Computer Company shall assume no liability as a consequence of such events under the terms of this warranty.
While every effort, on the part of Apple Computer Company, is made to provide clear and accurate technical instruction on the use, implementation, and application of its products, the Apple Computer Company shall assume noliability in events which may arise from the application of such technical instruction, nor shall the Apple Computer Company be held liable for the quality, interconnection, or application of periferal products, which may have been recommended by Apple Computer Company, but which have not been supplied as part of the product.
This warranty contains and embodies the limits of responsibility of the Apple Computer Company, with regard to its products, and no other liability is expressed, implied, or should be assumed by the purchaser, and in no event shall the Apple Computer Company be held liable for the loss of time, effort, or transportation costs, nor for loss of potential profits or other consequentiallosses which might arise from the purchase, assembly, use, application, or subsequent sale of the products of Apple Computer Company, nor from any instructions and/or technical information thereto related.

BYTE FHZP III Computar Smare

8. 2626 Union Avenue

San Jose, Calif. 95124

- (408) 377-4685

